

Measuring point	Installation	Measuring task
1	pipeline	determination of the oleum concentration
2	pipeline	monitoring of the sulfuric acid / oleum concentration
3	pipeline	control, and monitoring the blending to the desired concentration

H₂SO₄ in Copper Mining

Introduction

Copper is obtained by the extraction of copper sulfide ores, which have a copper content of ~ 2 wt%. The raw metal production includes a wide variety of process steps.

The processing of copper sulfide ores is carried out by flotation. Thereby, crushed copper sulfide ores are enriched with water and a foaming agent, to skim quartz or silicates. The obtained copper concentrate has a copper content of 20 - 40 wt%.

In the pyrometallurgical extraction, SO_2 is generated which is oxidized with atmospheric oxygen to form sulfur trioxide SO_3 (contact process). What remains is a copper content of approx. 96-99 wt%. In order to reach a purity of 99.99 wt%, a electrolytic refining takes place subsequently. Otherwise, the impurities strongly influence the thermal and electrical conductivity and quality of copper.

Application

In the pyrometallurgical extraction, the copper concentrate is slagged by adding SiO_2 in the furnace at 1200 to 1400 °C. The melt of copper and iron sulfide is removed as the so-called copper matte from the slag phase. The liquid copper matte is poured into a converter and the iron sulfide reacts with air to sulfur dioxide SO_2 .

Resulting SO_2 is oxidized to sulfur trioxide SO_3 (contact process), which SO_3 is directed into sulfuric acid (96 wt%). In the absorber, sulfuric acid in high concentrations by adding water or oleum is generated. In the blending process, the $\rm H_2SO_4$ is diluted on desired target concentration.

Each process step can be both monitored continuously by the inline LiquiSonic® measurement technology and optimally set. The high dependency on sonic velocity enables an accuracy of +/- 0,05 wt% for sulfuric acid.

Customer value

easy installation: plug 'n play

maintenance-free and excellent long term-stability

improved process control precise H₂SO₄ strength ± 0.05 wt% corrosion protection

no unclear laboratory values anymore

inline measurement 24/7 real-time data

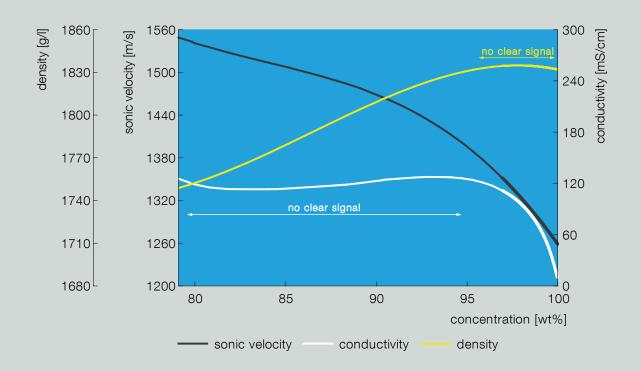
strong diagnostic capabilities

powerful data storage

corrosion-resistant sensor material Hastelloy C2000, Hastelloy BC1 Hybrid **Tantalum** PFA coating

LiquiSonic® replaces laboratory costs: No sampling No titration (common laboratory method) reduced personell costs amortization < 1 year

Installation


The LiquiSonic® immersion sensor is easily installed into pipelines after absorber or sulfuric acid production and blending.

By using the LiquiSonic®, up to four sensors can be connected, allowing the simultaneous monitoring of several measuring points.

Typical measuring range: concentration range from H2SO4: 80 to 100 wt% temperature range: 20 to 90 °C

concentration range from oleum: 0 to 10 wt% temperature range: 10 to 60 °C

LiquiSonic® sonic velocity measurement

LiquiSonic®

9127	21001311 LiquiSonic [®] Controller 30 V10
5 S-C	21010123 Flange sensor V10 DN80 (3"), PFA coating
BUS	21004435 BUS connection: Profibus DP
	21004449 Network integration
$\bigwedge \bigwedge \bigwedge$	21004110 High power sensor electronic
	21004202 Bus cable indoor (100m)
	21007846 Factory acceptance test (FAT) certificate

T +49 39203 514 100 info@sensotech.com www.sensotech.com

T +1 973 832 4575 sales-usa@sensotech.com www.sensotech.com